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18.1 INTRODUCTION

Approximate dynamic programming (ADP) has emerged as a powerful tool for tack-
ling a diverse collection of stochastic optimization problems. Reflecting the wide
diversity of problems, ADP (including research under names such as reinforcement
learning, adaptive dynamic programming and neuro-dynamic programming) has be-
come an umbrella for a wide range of algorithmic strategies. Most of these involve
learning functions of some form using Monte Carlo sampling.

A recurring theme in these algorithms involves the need to not just learn policies,
but to learn them quickly and effectively. Learning arises in both offline settings
(training an algorithm within the computer) and online settings (where we have to
learn as we go). Learning also arises in different ways within algorithms, including
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learning the parameters of a policy, learning a value function and learning how to
expand the branches of a tree.

The focus of this chapter is to discuss different strategies for learning policies in
an efficient way. These “strategies” are themselves referred to as policies, as they
represent rules for guiding the collection of information. Passive learning policies will
collect information and update beliefs about functions, without making any explicit
attempt at collecting information in a way that would accelerate the learning policy.
Active learning refers to policies where we are willing to make suboptimal actions
explicitly because the information gained will add value later in the process. Most
of the literature has focused on simple heuristics, but in some cases these heuristics
have provable suboptimality bounds. Our presentation will focus primarily on the
knowledge gradient policy, which maximizes the rate of learning, and offers both
theoretical and practical features in a Bayesian setting which focuses on minimizing
expected opportunity cost.

To describe the different ways in which active learning arises, we need to first
understand different problem settings and, most importantly, the major classes of
policies. Section 18.2 provides a compact modeling framework and highlights some
important problem classes. After this, Section 18.3 identifies the major classes of
policies, which we then use to identify opportunities for optimal learning.

18.2 MODELING

There are five core components of any stochastic, dynamic system. These include

• The state variable St - The state variable captures the information available at
time t.

• Decisions, actions or controls - We use the notation at to represent discrete
action spaces, although many problems exhibit vector-valued decisions or
controls.

• Exogenous information - We let Wt represent any random information that
becomes known for the first time at discrete time t.

• The transition function - Also known as the system model, plant model or just
model, we represent it using the function SM (·) where we will write

St+1 = SM (St, at,Wt+1)

to represent the evolution of the state variable over time due to the effect of an
action at and new information Wt+1.

• Objective function - We let C(St, at) be the contribution (if maximizing) or
cost (if minimizing) that depends on the state St and action at. In some
applications, the one-period contribution may be random at time t, in which
case we would write it as C(St, at,Wt+1). In this case, we assume that
C(St, at) is the expected contribution.
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For our purposes, we need to further identify three perspectives of a state variable:

• The physical state - Sometimes called the resource state, there are many prob-
lems where we are managing a resource such as robots, a fleet of vehicles, a
chemical process or financial investments. The resource state,Rt, captures the
state of physical entities that are being managed.

• The information state - Widely used in control theory, we let It capture infor-
mation used to make a decision, which would include Rt but may also include
information such as prices and the weather.

• The knowledge (or belief) state - The knowledge state captures our belief
about unobservable parameters. This is a particularly important dimension of
the problems we consider in this chapter, and represents one of the more subtle
and difficult dimensions of dynamic programming.

For the moment, we do not address the problem of how we make decisions, other
than to assume there is some rule, or policy for making decisions. The research
literature will typically represent a policy as π. We prefer the notation that if we are
determining an action a, our policy would be written as a function Aπ(St) where
π parameterizes both the class of function (examples are given below), and any
parameters that determine the behavior of the function. If we use decision x, our
decision function would be written Xπ(St).

We need an objective function that defines the best policy. We assume that we
are maximizing expected total (possibly discounted) contributions, recognizing that
there are other objective functions. The problem of finding the best policy can be
written

max
π

Eπ
T∑
t=0

γtC(St, A
π(St)). (18.1)

Equation (18.1) is the formal definition of a dynamic program, which is a sequential
decision process. We are generally not able to find a policy that solves (18.1), so we
have to resort to finding an approximate policy. This is the essence of approximate
dynamic programming.

18.3 THE FOUR CLASSES OF POLICIES

The literature on stochastic optimization can sometimes be viewed as a jungle of
modeling and algorithmic strategies. Terms like “policy search,” “reinforcement
learning,” “stochastic programming,” “simulation-optimization,” “model predictive
control,” “Monte Carlo tree search” and “actor-critic methods” (to name a few) are
often used without a clear definition.

Without question, perhaps one of the most confusing and misunderstood terms in
dynamic programming is the word policy. Stated simply, a policy is a mapping from
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state to action. These mappings are typically written as functions, and are sometimes
confusingly described as rules.

The research community has created a complex array of functions for making
decisions. These can generally be boiled down to four fundamental classes, with
many opportunities for creating hybrid policies. We list these because the structure
of each policy introduces specific learning challenges.

18.3.1 Myopic cost function approximation

There is the rare problem that lends itself to a simple myopic policy of the form

AM (St) = arg max
a

C(St, a).

One example involves balancing financial portfolios when there are no transaction
costs. We can set up a model where we maximize one-period returns plus a penalty
for the aggregate volatility of the account. Without transaction costs, we can move
funds from one asset to another with no cost. As a result, a policy that optimizes the
one-period utility is optimal.

Myopic policies are often used as heuristics in specific applications. We might
have a resource i (such as a truck) that we are looking to assign to task j (such as a
load). Let cij be the cost of assigning truck i to load j. A myopic policy would be
to solve

AM (St) = arg min
a

∑
i

∑
j

cijaij ,

subject to ∑
i

aij ≤ 1,∑
j

aij ≤ 1,

aij ≥ 0.

We further assume that unassigned drivers and loads are held to the next time period.
This policy is actually used in some commercial dispatch systems in the truckload
trucking industry, but it is hardly optimal. For example, it ignores how long a load
has been held. A proper dynamic program would capture how long drivers and loads
have been sitting, and would make a decision that balances minimizing costs and
service delays over an entire horizon. Since this is hard to solve, a simple heuristic
is to introduce a bonus for moving loads that have been waiting. Letting τi be the
length of time that a load has been waiting, the policy would be given by

AM (St|θ) = arg min
a

∑
i

∑
j

(cij − θτi)aij . (18.2)

Here we have created a family of myopic policies parameterized by θ.
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18.3.2 Lookahead policies

Lookahead policies come in many forms, but they all involve optimizing explicitly
over multiple time periods, but then just retaining the decision that we implement
now. The most common type of lookahead uses a point forecast of any random
information, which transforms the model into a deterministic optimization problem
of the form

AL(St) = arg max
t

(
ctat +

t+t̄∑
t′=t+1

ct′at′

)
.

Here, we define arg maxt as the operator that maximizes over the vector at, . . . , at+t̄,
but only returns at. This strategy is often referred to as a rolling horizon procedure,
because we optimize over a horizon of length T̄ , implement the decision for time t,
and then roll forward, updating any parameters due to new information.

There are several communities that work to incorporate uncertainty into the looka-
head process, such as decision trees (for problems with small action spaces) or
stochastic programs (for vector-valued decisions; see Birge and Louveaux, 1997).
Monte Carlo tree search (MCTS) has become a popular field of research in the rein-
forcement learning community, contributing to breakthroughs on difficult problems
such as computer Go (Silver, 2009; Gelly and Wang, 2006; Coulom, 2006).

18.3.3 Policy function approximation

We use the term “policy function approximation” to refer to direct mappings from
states to actions, without the need to solve an embedded optimization problem.
Examples of policy function approximations include

• If a patient has a set of symptoms s, choose drug d (for every state, we have to
have an associated drug).

• If the inventory in a store is less than q, order enough to bring it up to Q.

• If the reservoir in a lake is of level h, set the rate of outflow from the dam to
x = θ0 + θ1h.

• There is a set of discrete actions a with contribution C(s, a) when we are in
state s. We are going to choose action a with probability

p(a, s|θ) =
eθC(s,a)∑
a′ e

θC(s,a)

where θ is a tunable parameter. As θ is increased, we increase the likelihood
that we will choose action a.

In the drug example, we have a parameter (the choice of drug d) for each state. Let
θs be the choice of drug if we are in state s. In the inventory example, we might
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write θ = (q,Q). In the lake example, the decision is determined by a function
parameterized by θ = (θ0, θ1). Note that while the second and third policies have
only two parameters, the drug policy has a parameter for every state. The fourth
policy (which is widely used in reinforcement learning) is parameterized by a scalar
θ.

18.3.4 Policies based on value function approximations

It is well known that we can mathematically characterize an optimal policy using
Bellman’s optimality equation which we write using

Vt(St) = max
a

(
C(St, a) + γ

∑
s′

p(s′|St, a)Vt+1(s′)

)
(18.3)

= max
a

(
C(St, a) + γE{Vt+1(SM (St, a,Wt+1))|St}

)
. (18.4)

We use the time dependent version because it makes the modeling clearer (in addition,
there are many problems where policies are time dependent). Equation (18.3) is the
form most widely used in texts on Markov decision processes (such as Puterman,
2005), while equation (18.4) is known as the expectation form, where the expectation
is over the random variable Wt+1 given that we are in state St.

There is an rich literature that has evolved around the idea of using Bellman’s
equation to derive optimal (or at least good) policies. We face several challenges
when going down this path. First, for most applications we cannot compute the
expectation. We circumvent this by using the concept of the post-decision state Sat ,
which is the state after making a decision but before any new information has arrived.
Second, we cannot compute the value function exactly, we replace it with a statistical
approximation. While we can tap a wide array of approximation strategies (see, for
example, Hastie et al., 2009), the most popular strategy is a simple linear model of
the form

V̄t(S
a
t |θt) =

∑
f∈F

θtfφf (Sat ). (18.5)

where (φf (Sat ))f∈F is a vector of user-specified basis functions and (θf )f∈F is a
vector of regression parameters. This allows us to write our policy as

Aπ,nt (St|θt) = arg max
a

C(Snt , a) + γ
∑
f∈F

θntfφf ((Sa(Snt , a)))

 . (18.6)

Despite the elegance and simplicity of this general strategy, it requires decisions
about a range of algorithmic choices. Provably convergent algorithms are rare and
generally require fairly strong assumptions (for example, the policy may be fixed
rather than optimized; see Sutton et al., 2009, for a recent example). There are
different strategies for generating sample estimates of the value of being in a state,
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estimating the value of a policy versus updating a policy, applying on-policy versus
off-policy learning, and state sampling. One issue that arises is that the information
we collect to update the value function approximation depends on what state we visit,
and we have some control over the state.

For in-depth discussions of the use of value function approximations, we refer the
reader to Chapter 6 in Bertsekas (2011a), Bertsekas (2011b), Bertsekas and Tsitsiklis
(1996), Sutton and Barto (1998), Szepesvari (2010) and Chapters 8-10 of Powell
(2011), and the many references cited there.

18.3.5 Learning policies

We have outlined above four fundamental classes of policies. Needless to say, it
is possible to create a host of additional policies by mixing and matching these
strategies. One popular strategy is to use a limited tree search with a value function
approximation at the end of the tree. Cost function approximations are widely used
to improve myopic policies, but just as often will be merged with a rolling horizon
procedure (again, a form of tree search).

Three of these fundamental policies involve some sort of functional approxima-
tion: approximating a cost function, approximating a function that specifies the
policy, and approximating a value function which in turn is used to define a policy.
There are three ways of approximating functions: lookup tables, parametric models
and nonparametric models. With a lookup table, specifying a discrete state returns an
action (policy function approximation) or the value of being in a state (value function
approximation). Parametric models, used for all three types of functional approxi-
mations, represent any analytical function with a predetermined set of parameters to
be determined. Nonparametric models have also been suggested for both policies
(primarily for engineering applications with continuous actions) and value functions.

Special challenges arise when we have to learn value function approximations.
There is a major difference between learning the parameters θ that govern the behavior
of a policy, and learning value functions. As we show below, the first can be modeled
as a dynamic program with a pure belief state, while the second requires that we
handle the presence of a physical state.

Below, Section 18.4 provides an introduction to the basic problem of tuning
the parameters of a policy and introduces several popular heuristic policies. Then,
Section 18.5 presents optimal policies for learning, including a characterization of
the optimal policy for learning as a dynamic program with a pure belief state. Finally,
Section 18.6 closes with a discussion of optimal learning in the presence of a physical
state, which is the challenge we face in approximate dynamic programming.

18.4 BASIC LEARNING POLICIES FOR POLICY SEARCH

All four classes of policies above can be represented as a function Aπ(St|θ) if we
wish to choose a discrete action at. The indexπ specifies the class of function, while θ
captures all the tunable parameters that determine the behavior of the function within
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the class of policy (we should write the tunable parameter vector as θπ to express
its dependence on the class of policy, but we suppress this bit of additional notation
for simplicity). We emphasize that Aπ(St|θ) may be any of the four fundamental
classes of policies, including policies based on value function approximations.

Once we have chosen the class of policy π, the problem of finding the best vector
θ requires solving

min
θ
Fπ(θ) = E

T∑
t=0

C(St, A
π(St|θ)). (18.7)

Equation (18.7) is a classical problem in stochastic optimization that was first ad-
dressed in the seminal paper by Robbins and Monro (1951). Recognizing that the
expectation cannot be computed for any but the most specialized problems, we use
our ability to simulate a policy, or to observe a policy being used in a real situation.
Given a sample path ω, let Fπ(θ, ω) be a simulation of the value of policy π. If we
further assume that we can compute the gradient∇θFπ(θ, ω) (along with some other
assumptions), the classic stochastic approximation procedure would allow us to find
θ using

θn = θn−1 − αn−1∇θFπ(θn−1, ωn). (18.8)

Equation (18.8) is a simple, elegant optimization algorithm which offers provable
asymptotic convergence (for reviews, see Chang et al., 2007; Fu, 2008). At the same
time, there are no promises on rate of convergence: while this algorithm can work
quite well in practice, it can be slow. Finally, there are many problems where we
cannot find the gradient. There are hundreds of papers addressing the many variations
of this fundamental problem. For reviews, see Spall (2003), Ruszczynski and Shapiro
(2003) and Shapiro et al. (2009).

Our focus is not just learning the best policy, but learning it quickly, with the
ultimate (if unachievable) goal of learning it at an optimal rate. Rate of convergence
is particularly useful when computing a sample realization of Fπ(θn−1, ωn) is slow.
It is not hard to find industrial models where calculating Fπ(θn−1, ωn) can take
anywhere from 30 minutes to a day or more. There are settings where Fπ(θn−1, ωn)
is not a computer simulation but rather is a physical system. We might be interested
in a sales policy where we would fix θ and then observe sales for a week or more.

The literature on optimal learning typically focuses on solving a problem of the
form

min
x

EF (x,W ), (18.9)

where we have to find the best valuex ∈ X within a finite measurement budget. In our
setting, it is more natural to use θ to parameterize the policy (in some communities, x
is used as the decision variable within the dynamic program). It should be apparent
that equations (18.7) and (18.9) are equivalent. We are going to let θx be a particular
value of θ corresponding to x ∈ X , so that there is a one-to-one relationship between
x and θ, allowing us to bridge two notational systems.
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In practice x (or θx) may be a) a small, discrete set, b) a large, discrete set (that
is, too large to enumerate), c) a continuous scalar, or d) a vector of any form. We do
not have the space to describe specialized algorithms for all these cases, but we are
going to cover algorithms that can handle a wide range of applications that arise in
practice, including problems where x is continuous.

18.4.1 The belief model

We proceed by first forming a belief model about F (x) = Fπ(θx). If x ∈
{1, 2, . . . ,M}, it is standard practice to use a Bayesian model where µx is the
unknown true value of F (x) where x = θx. We treat µx as a random variable
which is normally distributed with mean µ0

x and precision β0
x = 1/(σ0

x)2, where the
precision is the inverse of the variance. We refer to (µ0

x, β
0
x) as our prior (in addition

to the assumption of normality). We have to specify these parameters based on some
domain knowledge (or preliminary simulations). They reflect our belief about the
likely values of µx.

We are going to start by assuming that we have a lookup table representation of
F (θ), which is to say that there is a true value µx = EF (θx) giving us how well
the policy performs if θ = θx. For our lookup table representation, we assume
that we are searching for the best value of θ among a finite set of vectors (θx)x∈X ,
X = {1, 2, . . . ,M}. We let (µnx , β

n
x ) be our belief about F (θx) after n observations.

For a Bayesian model with a normal prior and normally distributed observationsWn
x

of F (x), beliefs are updated using

µn+1
x =

βnxµ
n
x + βWWn+1

x

βnx + βW
, (18.10)

βn+1
x = βnx + βW . (18.11)

Here, βW = 1/σ2
W is the precision (inverse variance) of a measurement Wn

x . We
assume that βW is independent of x, but this is easily generalized.

18.4.2 Objective functions for offline and online learning

Assume that we have a budget of N measurements to find the best value of x. Let
µNx be our belief about F (x) = F (θx) after N measurements which were chosen
according to policy π, and let

xπ = arg max
x

µNx

be our choice of the optimal solution while using policy π. This problem is widely
known as the ranking and selection problem but we prefer the term offline learning,
where we do not care about rewards earned while we are trying to learn the best
choice.

Our goal is to find a policy π that solves the following maximization problem

max
π

EµEWµxπ . (18.12)
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The objective function in (18.12) reflects the fact that there are two sets of random
variables we have to deal with. First, the true values µx are normally distributed with
mean µ0 and precision β0. Second, the observations W 1, . . . ,WN are observed
from distributions determined by µ and our policy π, and will affect the outcome of
xπ .

If we are learning as we progress (known as online learning), our objective function
becomes

max
π

EµEW
N∑
n=1

γnµxn , (18.13)

where xn = arg maxx′ µn−1
x′ and 0 < γ ≤ 1 is a discount factor. Online learning is

widely referred to as the multi-armed bandit problem in the research literature (see
Gittins et al., 2011, for a thorough review). It has drawn significant attention in the
applied probability and computer science communities. If we are tuning a policy,
most of the time we are doing this in an offline fashion within a computer, but we may
have to design policies in real time, incurring costs and rewards as we are learning
the policy.

18.4.3 Some heuristic policies

Some of the best known heuristic policies include:

• Pure exploitation - This policy uses

xn = arg max
x∈X

µnx .

Pure exploitation makes the most sense for online learning problems, where
there is value in getting the best solution at each iteration. However, this is
widely used in response-surface methods, where at each iteration we update a
parametric approximation of F (x).

• Pure exploration - This policies chooses x at random. This approach makes
sense in off-line settings, where we are using observations to fit a parametric
approximation of F (x) which is then optimized to find the best value of x.

• Epsilon-greedy exploration - This is a hybrid, where we choose x at random
(explore) with probability ε, and choose what appears to be the best (exploit)
with probability 1 − ε. Typically ε declines with the number of iterations.
Epsilon-greedy focuses more energy on evaluating the option that appears to
be the best, but still provides for a level of exploration in case we are missing
what is truly the best option. See Sutton and Barto (1998) for an introduc-
tion to epsilon-greedy and Singh et al. (2000) for an analysis of convergence
properties.

• Boltzmann exploration - Here we choose x with probability

pnx =
exp (ρµnx)∑

x′∈X exp (ρµnx′)
.
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This policy overcomes a major limitation of epsilon-greedy, which does not
treat the second best option any differently than the worst. If ρ = 0, Boltzmann-
exploration is equivalent to pure exploration, while as ρ increases, it approaches
pure exploitation. Boltzmann exploration is very popular in the reinforcement
learning community as a parameterized random policy, where it is sometimes
referred to as a soft-max policy.

• Interval estimation - For each x, we compute

νIE,nx = µnx + zασ
n
x

where zα is a tunable parameter (often set to around 2 or 3), and where
(σnx )

2
= 1/βnx is the variance of our beliefs about µx. IE was introduced by

Kaelbling (1993).

• Upper confidence bounding - A UCB policy, designed specifically for normally
distributed measurements, is calculated using

νUCB,nx = µnx + 4σW

√
log n

Nn
x

. (18.14)

Here, Nn
x is the number of times we have observed x through time n.

Pure exploration and exploitation are heuristics with obvious weaknesses, but ex-
ploration is often used in offline learning where you observe the function at random
locations, fit a function and then choose the best. By contrast, pure exploitation is
widely used in practice for online learning problems, where choosing what appears to
be the best is an understandable if imperfect policy. Epsilon-greedy and Boltzmann
exploration are both hybrid exploration-exploitation policies.

Interval estimation is the first policy that uses both the current estimate of our
belief µnx about F (x), and the uncertainty in this belief. Here, n refers to the number
of times we have observed x. It is important to tune the parameter zα, but properly
tuned, IE has been found to work well in practice.

Upper confidence bounding, known generally as UCB policies, is similar to inter-
val estimation in that there is a term added to the estimate µnx that captures how good
µx might be. UCB policies have attracted considerable interest because it is possible
to prove that there is a logarithmic bound in N on suboptimality (or regret) in online
learning. Regret bounds on UCB policies were first introduced by Lai and Robbins
(1985); the UCB policy presented here is given in Auer et al. (2002). Researchers
have started to develop similar policies for offline learning problems with similar
regret bounds, but as of this writing, experimental evaluations of these policies are
limited (see Bubeck et al., 2009, for an example).

We note that classical stochastic gradient methods such as the one in equation
(18.8) do not use any form of learning. After observing a stochastic gradient, we
update our estimate of the best value of θ, but we do not otherwise update any
belief models. By contrast, we assume that when using any of the policies listed in
this section, we would use equations (18.10)-(18.11) to update our beliefs about the
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choice we just observed. Pure exploitation makes no effort to collect information
purely for the value of learning, while all the remaining policies use some form of
explicit exploration, where we are willing to observe a value x that we do not believe
is best, because it is possible that it might be best. In our own experiments, interval
estimation seems to work extremely well if zα is properly tuned (and this tuning can
have a real impact on performance). By contrast, we have had less success with UCB
policies, but these policies are supported by rigorous bounds. However, these bounds
also grow with N , so empirical performance may vary.

18.5 OPTIMAL LEARNING POLICIES FOR POLICY SEARCH

Ideally, we would have a way to find the policy π that produces the best possible
result, whether it is offline or online. It turns out we can characterize the optimal
policy by formulating the problem as a dynamic program, first presented in DeGroot
(1970). Assume that everything is still normally distributed. Then, our state variable
is our state of belief, which is given by Sn = (µnx , β

n
x )x. Bellman’s equation then

characterizes the optimal policy using

V n(Sn) = max
x

(
C(Sn, x) + γE{V n+1(Sn+1(s, x))|Sn}

)
, (18.15)

where Sn+1 is given by equations (18.10) and (18.11). Unfortunately, (18.15) is
computationally intractable. It is important to emphasize that the problem setting of
learning the parameters of a policy can be formulated as a dynamic program with
just a belief state. Later, we consider the much more difficult problem of combining
a belief state with a physical state.

For this basic model, the optimal policy can be characterized using Gittins indices,
given by

νGitt,nx (µnx , σ
n
x , σW , γ) = µnx + σWG

(
σnx
σW

, γ

)
. (18.16)

This theory, described in depth in Gittins et al. (2011), is very elegant, but the functions
G
(
σnx
σW

, γ
)

, known as Gittins indices, are hard to compute. Chick and Gans (2009)
has developed a simple analytical approximation to overcome this problem, but
Gittins indices are only optimal within a relatively simple class of problems that does
not arise often in practice. As an alternative, we propose the use of the knowledge
gradient, a simple concept that can be extended to handle more general settings.

18.5.1 The knowledge gradient for offline learning

Let

V n(Sn) = max
x′

µnx′

be the current value of our problem given the state of knowledge Sn after n iterations.
Then let Sn+1(x) be the belief state if we choose to measure xn = x and observe
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Wn+1
x (which is still random since we have not actually performed the observation),

which means that V n+1(Sn+1(x)) is a random variable. The knowledge gradient is
a policy where we choose to measure the alternative x that gives us the greatest value
of information, and is given by

νKG,nx = E
[
V n+1(Sn+1(x))− V n(Sn)|Sn

]
. (18.17)

Here, Sn is our current state of knowledge (that is, the beliefs about all the alterna-
tives), and Sn+1(x) is the state of knowledge if we choose to observe x, but before
we have actually made the observation. The concept is simple; the trick is computing
it.

Up to now, we have focused on problems with independent beliefs, which is to
say that if we choose to measure x and observe Wn

x , we do not learn anything about
alternatives x′ 6= x. For this problem, computing the knowledge gradient is quite
simple. We first have to find the conditional change in the variance of an estimate
given a measurement, given by

σ̃2,n
x = Varn[µn+1

x − µnx ].

It is possible to show that this is given by

σ̃2,n
x = σ2,n

x − σ2,n+1
x (18.18)

= (βnx )−1 − (βnx + βW )−1. (18.19)

We next compute ζnx which is given by

ζnx = −
∣∣∣∣µnx −maxx′ 6=x µ

n
x′

σ̃nx

∣∣∣∣ . (18.20)

Now let

f(ζ) = ζΦ(ζ) + φ(ζ), (18.21)

where Φ(ζ) and φ(ζ) are, respectively, the cumulative standard normal distribution
and the standard normal density.

We can now express the knowledge gradient as

νKG,nx = σ̃nxf(ζnx ). (18.22)

The knowledge gradient policy chooses to measure the value x which maximizes
νKG,nx over all x.

Compared to solving the dynamic program in equation (18.15), the knowledge
gradient is simply a one-step lookahead policy. However, in contrast with problems
with a physical state, this policy seems to work extremely well for pure learning
problems. For offline learning problems, it offers several nice theoretical properties:

1) The knowledge gradient is always positive, νKG,nx ≥ 0 for all x. Thus, if the
knowledge gradient of an alternative is zero, that means we won’t measure it.
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2) The knowledge gradient policy is optimal (by construction) if we are going to
make exactly one measurement.

3) If there are only two choices, the knowledge gradient policy is optimal for any
measurement budget N .

4) If N is our measurement budget, the knowledge gradient policy is guaranteed
to find the best alternative as N is allowed to be big enough. That is, if xN is
the solution we obtain after N measurements, and

x∗ = arg maxµx

is the true best alternative, then xN → x∗ as N →∞. This property is known
as asymptotic optimality or consistency.

5) There are many heuristic policies that are asymptotically optimal (for example,
pure exploration, mixed exploration-exploitation, epsilon-greedy exploration
and Boltzmann exploration). But none of these heuristic policies are my-
opically optimal. The knowledge gradient policy is the only pure policy (a
more precise term would be to say it is the only stationary policy) that is both
myopically and asymptotically optimal.

6) The knowledge gradient has no tunable parameters.

Myopic optimality and asymptotic optimality are the two properties that suggest that
the knowledge gradient will have good convergence over intermediate budgets.

The one issue that requires some caution is known as the S-curve effect, that
arises when the marginal value of information is nonconcave in the number of
measurements. This is easy to detect, because all we have to do is to compute
the knowledge gradient assuming that we measure alternative x a total of nx times.
The value of information can be nonconcave when the precision of a measurementβW

is low, which means that a single measurement does not contain enough information
to accurately indicate whether an alternative is good. Frazier and Powell (2010)
identifies this problem and proposes a solution, called the KG(*) policy, where
we find nx that maximizes the average value of information over nx consecutive
measurements. We then choose the alternative x with the highest average value, but
we may only measure it once.

The knowledge gradient for independent beliefs is appealing because it works
well, is easy to compute and there are no tunable parameters such as the parameter
zα for interval estimation. There is, of course, the need to specify a prior, although
it is always possible to create a prior using an initial sample (a strategy known as
“empirical Bayes”).

18.5.2 The knowledge gradient for correlated beliefs

The real power of the knowledge gradient arises in its ability to handle correlations
between beliefs. This means that if we observe the value of x, we learn something
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about x′. Correlated beliefs might arise when F (x) is continuous in x, so that the
values of x and x′ are similar when x and x′ are closer together.

Let Σn be the matrix where element (x, x′) gives Covn(µx, µx′). Let

Bn = (Σn)−1,

where Bn is the matrix version of our precision. It is straightforward to show that

µn+1 = (Bn+1)−1
(
Bnµn + βWWn+1exn

)
, (18.23)

Bn+1 = (Bn + βW exn(exn)T ), (18.24)

where ex is a vector of 0’s with a 1 in position x. We next compute the matrix form
of the conditional change in the variance if we measure alternative x using

Σ̃n(x) = Σn − Σn+1 (18.25)

=
Σnex(ex)TΣn

Σnxx + λW
, (18.26)

where λW = 1/βW is the variance of a measurement. This matrix is analogous to
the variance reduction in (18.19). Let

σ̃n(x) =
Σnex√

Σnxx + λW
, (18.27)

be the column vector reflecting the change in the variances across all alternatives
if we choose to measure x. The knowledge gradient in the presence of correlated
beliefs is given by

XKG(s) = arg max
x

E
[
max
i
µn+1
i | Sn = s, xn = x

]
(18.28)

= arg max
x

E
[
max
i

(
µni + σ̃i(x

n)Zn+1
)
| Sn, xn = x

]
,

where Zn+1 is a scalar, standard normal variable with mean 0, variance 1.
There is a way to compute the expectation exactly. We start by defining

h(µn, σ̃(x)) = E
[
max
i

(
µni + σ̃i(x

n)Zn+1
)
| Sn, xn = x

]
. (18.29)

Substituting (18.29) into (18.28) gives us

XKG(s) = arg max
x

h(µn, σ̃(x)). (18.30)

Let h(a, b) = Emaxi(ai + biZ), where a = µni , b = σ̃i(Σ
n, xn) and Z is our

standard normal deviate. The lines ai + biZ can be used to determine the values of
Z for which alternative i would become the best, but we have to recognize that some
alternatives are simply dominated by all the other alternatives. We first assume that
the lines are sorted in order of increasing bi. It is then necessary to identify these
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dominated alternatives and eliminate them. This procedure is described in Frazier
et al. (2009) and Powell and Ryzhov (2012). Once this step is complete, we can
compute the knowledge gradient by using

h(a, b) =

M∑
i=1

(bi+1 − bi)f(−|ci|),

Correlated beliefs arise in a variety of settings. For the purpose of tuning parame-
ters of a function, continuity is the most common motivation because an observation
of x changes our belief about nearby points. For a problem where the measurement
vector x (or θ) is multidimensional, we can randomly generate a large number of
potential points and search over these. We can handle problems with several thousand
alternatives, even if we have a measurement budget that is much smaller.

18.5.3 The knowledge gradient for online learning

Up to now, we have focused on developing the knowledge gradient for offline learning
problems. It turns out that if we can compute the knowledge gradient for offline
learning problems, there is a simple way to adapt this to give us the knowledge
gradient for online learning problems. We are not going to duplicate the derivation
(given in Ryzhov et al., 2011). If we have a measurement budget ofN measurements
and we have already completed n, the knowledge gradient for an undiscounted
problem is given by

νonline,nx = µnx + (N − n)νKG,n(x),

where νKG,n(x) is the offline knowledge gradient for alternative x. If we have a
discount factor γ, the knowledge gradient is given by

XKG,n = arg max
x

µnx + γ
1− γN−n

1− γ
νKG,nx .

TakingN →∞, we obtain the knowledge gradient rule for infinite-horizon problems,

XKG,n = arg max
x

µnx +
γ

1− γ
νKG,nx .

18.5.4 The knowledge gradient for a parametric belief model

There are many applications where it is simply not practical to use a lookup repre-
sentation of a belief model. Often, it is useful to use a parametric model. Assume
that we would like to approximate F (x) using

F (x) ≈
∑
f∈F

ηfφf (x).

Here, instead of one parameter µx = F (x) for each alternative x, we have a vector
of parameters (ηf )f∈F , where the number of parameters is dramatically smaller than
the number of alternatives x (which may in fact be continuous).
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It is possible to compute the knowledge gradient when the vector η is the parame-
ters of a linear model. The idea is the same as the knowledge gradient for correlated
beliefs using a lookup table. The difference is that rather than computing and storing
the matrix Σn, which may be computationally prohibitive (imagine a matrix with
tens of thousands of rows and columns), we can compute σ̃n(x) in a much more
compact way.

First, create a matrixXn where each row is made up of (φ1(xn), . . . , φf (xn), . . . ,
φF (xn)), and where there is a row for each measurement x1, . . . , xn. Let Y n be
the column vector of the corresponding observations of the function F (x). We can
compute the parameter vector θ using the normal equations, given by

θn = [(Xn)TXn]−1XnY n.

Let Ση,n be the covariance matrix for our beliefs about the true values of the vector
θ after n observations, which is given by

Ση,n = [(Xn)TXn]−1σ2
ε ,

where σ2
ε is the variance of a measurement. It is easy to show that

Σn = XnΣη,n(Xn)T .

However, we do not need to compute the entire matrix Σn - we only need a single
row corresponding to a particular alternative that we are measuring. So, while this
row will still have many elements, at least we do not have to do an entire matrix.

18.5.5 Discussion

We now have a fairly powerful set of tools for performing policy search. We can
treat each possible θ in (18.7) as an alternative in an optimal learning problem, and
apply the knowledge gradient or other learning policies. We can obtain a realization
W (ω) of the policy value Fπ (θ) by simulating the exogenous information driving
the dynamic program over a time horizon T , while using the particular vector θ to
lock in all decisions via (18.6).

We emphasize that we have not made any attempt to survey the substantial literature
that already exists for this problem class, but the knowledge gradient offers some
uniquely attractive features: a fast rate of convergence (since it maximizes the value
of each measurement) and the ability to handle correlated beliefs, even among large
numbers of alternatives. This said, there is a cost to this power. While the knowledge
gradient for independent beliefs is quite easy to compute, the knowledge gradient
for correlated beliefs requires executing an algorithm. This introduces a level of
overhead that will make sense for some applications, but not for others.

18.6 LEARNING WITH A PHYSICAL STATE

The challenge of optimal learning has been well-known in the approximate dynamic
programming community for decades, where it is widely referred to as the “explo-
ration vs. exploitation” problem. The problem is easily illustrated using the two-stage
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(1) 0V  (2) 0V 

$2

-$5

$12

$31 2

Figure 18.1 A two state dynamic program, where the estimated value of being in each state
is currently zero.

dynamic program in Figure 18.1, where we start by approximating the value of each
state as zero. If we start in state 1, it appears that it is best to stay in state 1 because
transitioning to state 2 would produce an immediate loss of $5, with an approximate
future value of zero when we land in state 2. However, only by visiting state 2 do
we realize that the approximation is not very good, and we would earn $12 when we
make the transition from state 2 to state 1.

Although we previously formulated our learning problem as a dynamic program in
Section 18.5, our success with a myopic policy depended on the property that the state
variable consisted purely of a belief state. Now, we are considering problems where
St represents a physical state. In this setting, an action at may bring information that
allows us to learn, but it also has the effect of moving us from St to St+1, where we
now face a different set of actions, and where the information we learned by taking
action at from state St may no longer be useful (we may never return to St). The
presence of a physical state is so common that references to “dynamic programming”
typically imply the existence of a physical state.

We have to be specific about what we are learning in our new dynamic program-
ming setting. These might include

• Costs or rewards - This is what we were doing in our previous discussion of
learning about policies. After each action, we may observe a cost which allows
us to update our belief about the costs.

• Transition functions - Given a state s and action a, we may transition to a
state s′ with probability p(s′|s, a). However, we may not be certain about this
transition matrix, and as we observe the actual transition, we may update our
belief about the transition matrix.

• Value functions - Learning optimal policies may involve learning the value of
being in a state. With each transition, we may update our belief about the value
of being in a state.

We focus our discussion here on the last category, which is perhaps the one most
widely associated with the exploration/exploitation problem.
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18.6.1 Heuristic policies

A number of heuristic policies have been suggested to assist with the exploration/
exploitation problem in approximate dynamic programming. For example, all of the
heuristic policies presented in Section 18.4.3 for problems without a physical state
can and have been applied to problems with a physical state.

Several policies have been designed specifically for learning problems with a
physical state. One is known as the R-max policy (developed by Brafman and
Tennenholtz, 2003), which starts with an upper bound on the value of visiting any
state which has been visited fewer than a specified number of times. Needless to say,
this policy is limited to problems with relatively small numbers of discrete states and
actions.

The E3 policy (“Explicit Explore or Exploit”) is a variation of epsilon-greedy
(Kearns and Singh, 2002). Upon reaching state Sn, our decision is made as follows.
If Sn is a state that we have never visited before, we make a random decision. If we
have visited Sn before, but fewer than m times, we make the decision that we have
tried the fewest number of times among all our previous visits to the state. Finally,
if we have visited Sn more than m times, we follow an exploitation policy. Once
again, the policy reduces to pure exploitation once we have sufficiently explored the
state space.

A more sophisticated policy is the local bandit approximation, an adaptation of
the Gittins index policy proposed by Duff and Barto (1996) and developed more fully
in Ryzhov et al. (2010). If we are in a state s and considering an action a that takes us
to a state s′, we evaluate this action by estimating the reward earned between starting
in s′ and then finally terminating back in s, divided by the time required (this is an
equivalent formulation of the Gittins index).

18.6.2 The knowledge gradient with a physical state

The knowledge gradient has been adapted to problems with a physical state in Ryzhov
and Powell (2010) and Ryzhov and Powell (2011), where the focus is on learning a
parametric model of the value function. The idea is as follows. Imagine that we are
in state s and considering an action a that might take us to state s′ (a random variable
given s and a). Once in s′ (remember that we have not yet decided if we want to take
action a), we identify the best action a′ which takes us to another downstream state
s′′. In the process, we obtain a sample estimate v̂′ of the value of being in state s′.
If we had obtained this observation, we could use it to update a linear model of the
value function, as in (18.5).

We do not have the space to fully derive the knowledge gradient policy with a
physical state, but it is useful to take a look at the final result, which is given by

XKG,n(Sn) = max
x

(
C(Sn, x) + γV̄ n(Sx,n)

+
∑
Sn+1

p(Sn+1|Sn, x)νKG,n(Sx,n, Sn+1)
)
. (18.31)



Table 18.1 Performance values in a benchmark energy storage problem (from Ryzhov
and Powell, 2011).

Offline objective Online objective
Mean Avg. SE Mean Avg. SE

Offline KG (basis functions) 1136.20 3.54 -342.23 19.96
Online KG (basis functions) 871.13 3.15 44.58 27.71

Offline KG (lookup) 210.43 0.33 -277.38 15.90
Online KG (lookup) 79.36 0.23 160.28 5.43
Epsilon-greedy (param.) -475.54 2.30 -329.03 25.31

The policy consists of three terms. The first two include the one-period contribution
plus the value of the downstream state, just as we would have with any exploitation
policy for dynamic programming. The third term νKG,n(Sx,n, Sn+1) captures the
value of information arising from being in post-decision state Sx,n and then making
a stochastic transition to Sn+1 (in this setting, both Sx,n and Sn+1 represent physical
states). This is multiplied by the probability of the transition from Sx,n to Sn+1,
which can be approximated using Monte Carlo simulation if necessary.

Equation (18.31) seems like a natural extension of a basic exploitation policy for
approximate dynamic programming to include a value of information term. It is
most suitable for online learning problems, which combine the reward being earned
(contribution plus value of the next physical state) with the value of the information
gained from the subsequent transition. If we compare the knowledge gradient for
offline and online settings, we see that the knowledge gradient policy for offline
learning would be given by

XOff,n(Sn) = arg max
x

∑
Sn+1

p
(
Sn+1|Sn, x

)
νKG,n

(
Sx,n, Sn+1

)
. (18.32)

Table 18.1 presents comparisons between a series of algorithms in both an offline
setting (where we use training iterations to learn a value function approximation,
and then evaluate the policy using a separate set of testing iterations) and an online
setting (where we accumulate rewards as we go). We compare both online and offline
KG, using both a lookup table representation as well as basis functions, against an
epsilon-greedy policy. We note the online version of KG works best when evaluated
using an online objective function (as we would expect), while the offline version
of KG works best when we use an offline objective function. Both outperform by a
significant margin the epsilon-greedy policy when using a parametric value function
approximation.
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