
What You Should Know About Approximate Dynamic Programming

Warren B. Powell

Department of Operations Research and Financial Engineering, Princeton University,
Princeton, New Jersey 08544

Received 17 December 2008; accepted 17 December 2008
DOI 10.1002/nav.20347

Published online 24 February 2009 in Wiley InterScience (www.interscience.wiley.com).

Abstract: Approximate dynamic programming (ADP) is a broad umbrella for a modeling and algorithmic strategy for solving
problems that are sometimes large and complex, and are usually (but not always) stochastic. It is most often presented as a method
for overcoming the classic curse of dimensionality that is well-known to plague the use of Bellman’s equation. For many problems,
there are actually up to three curses of dimensionality. But the richer message of approximate dynamic programming is learning
what to learn, and how to learn it, to make better decisions over time. This article provides a brief review of approximate dynamic
programming, without intending to be a complete tutorial. Instead, our goal is to provide a broader perspective of ADP and how it
should be approached from the perspective of different problem classes. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 56:
239–249, 2009

Keywords: approximate dynamic programming; reinforcement learning; neuro-dynamic programming; stochastic optimization;
Monte Carlo simulation

1. INTRODUCTION

There is a wide range of problems that involve making
decisions over time, usually in the presence of different forms
of uncertainty. Using the vocabulary of operations research
(which hardly owns this broad problem class), we might
describe our system as being in a state St , from which we
take an action xt and then observe new information Wt+1

which takes us to a new state St+1. We can represent our rule
(or policy) for making a decision using the function Xπ(St).
Most of the time, we can assume that we have a transition
function SM(·) (also known as the “system model” or some-
times just “model”) which describes how a system evolves
from St to St+1. The dynamics of our problem can then be
described using

xt = Xπ(St), (1)

St+1 = SM(St , xt , Wt+1). (2)

We assume that there is a choice of decision functions Xπ

where π ∈ � designates a particular function or policy (we
use decision function and policy interchangeably). After we
make a decision xt , we assume we earn a contribution (cost if
we are minimizing) given by C(St , xt) which usually depends
on the state. In some settings, the contribution depends on

Correspondence to: W.B. Powell (powell@pinceton.edu)

Wt+1, in which case it would be written C(St , xt , Wt+1). Our
goal is to find the best policy π ∈ � that solves

sup
π∈�

E

T∑
t=0

γ tC(St , xt), (3)

where γ is a discount factor. We need an expectation because
the information variable Wt is random (at times before
time t).

This simple framework covers a wide variety of problems.
There has been a desire among some in the research commu-
nity to design a general solution framework that covers all
problems, but we are quite sure that this is going to prove fruit-
less. What has happened is that there have emerged fairly dis-
tinct subcommunities that work on problems that tend to share
certain empirical characteristics. Somewhat frustratingly,
these communities have also developed different vocabular-
ies and different notational systems. The three major commu-
nities are control theory, which includes mainstream engi-
neering (e.g., electrical, mechanical, and chemical) as well
as economics, artificial intelligence (primarily computer sci-
ence), and operations research. Operations research spans dif-
ferent subcommunities that work on stochastic optimization,
including the Markov decision process community (whose
notation has been adopted by the artificial intelligence com-
munity), stochastic programming (a subcommunity of math
programming that considers uncertainty), and the simulation

© 2009 Wiley Periodicals, Inc.

240 Naval Research Logistics, Vol. 56 (2009)

community, which approaches stochastic optimization from
a somewhat different perspective.

These communities have evolved a rich vocabulary reflect-
ing the different domains in which the work takes place. In
operations research, the state variable is denoted St and is
most often understood to represent the physical state of the
system. In control theory, a state is xt which might refer to
the physical state of a production plant, the location, velocity,
and acceleration of an aircraft, or a vector of parameters char-
acterizing a statistical model. We use St as our state, xt as our
action, and Wt+1 as the information arriving between t and
t +1. In the dynamic programming community, it is custom-
ary to use the one-step transition matrix p(s ′|s, x) which is
the probability that we transition to state s ′ given that we are
currently in state s and take action x. In the controls commu-
nity, it is more natural to use the transition function SM(·),
which describes the physics of how the state evolves over
time.

Given the diversity of applications, it should not be sur-
prising that there is more than one way to approach solving
the optimization problem in Eq. (3). The most important of
these are as follows:

Simulation-optimization – Here we assume that our
decision function Xπ(St) depends only on what we
know now, and makes no attempt to use any sort of
forecast of how decisions now might impact the future.
These are generally known as myopic policies, and often
these depend on a set of parameters. We want to find
the set of parameters that perform the best over many
realizations of the future. Choosing the best set of para-
meters is typically done using the tools of stochastic
search [] and the closely related field of simulation
optimization (see Refs. and).

Rolling-horizon procedures – A RHP (sometimes called
a receding-horizon procedure) uses either a determinis-
tic or stochastic forecast of future events based on what
we know at time t . We then use this forecast to solve a
problem that extends over a planning horizon, but only
implement the decision for the immediate time period.

Dynamic programming – Dynamic programming makes
decisions which use an estimate of the value of states
to which an action might take us. The foundation
of dynamic programming is Bellman’s equation (also
known as the Hamilton-Jacobi equations in control
theory) which is most typically written []

Vt(St) = max
xt

(
C(St , xt) + γ

∑
s ′∈S

p(s ′|St , xt)Vt+1(s
′)

)
.

(4)

Recognizing that all three approaches can be valid ways
of solving a stochastic optimization problem, approximate
dynamic programming specifically focuses on using Bell-
man’s equation.

The remainder of this article provides a brief introduction
to the very rich field known as approximate dynamic pro-
gramming (ADP). As of this writing, there are three books
dedicated to this topic, each representing different commu-
nities. Neuro-Dynamic Programming [] is a primarily the-
oretical treatment of the field using the language of control
theory; Reinforcement Learning [] describes the field from the
perspective of artificial intelligence/computer science; and
Approximate Dynamic Programming [] uses the language
of operations research, with more emphasis on the high-
dimensional problems that typically characterize the prob-
lems in this community. Judd [] provides a nice discussion of
approximations for continuous dynamic programming prob-
lems that arise in economics, and Haykin [] is an in-depth
treatment of neural networks, with a chapter devoted to their
use in dynamic programming. We do not have the space to
cover all these perspectives, and focus instead on issues that
tend to arise in applications from operations research.

2. A BRIEF INTRODUCTION TO ADP

From the seminal work of Bellman [] to Puterman []
and including numerous authors in between, the field that
is typically referred to as Markov decision processes writes
Bellman’s equation in the form given in Eq. (4), which we
refer to as the standard form of Bellman’s equation. For our
purposes, it is more convenient (but mathematically equiva-
lent) to write Bellman’s equation using the expectation form
given by

Vt(s) = max
xt

(C(St , xt) + γ E{Vt+1(St+1)|St = s}). (5)

where St+1 = SM(St , xt , Wt+1), and the expectation is over
the random variable Wt+1. Vt(St) is the value function (in
control theory this is represented by J and is called the cost-
to-go function) which gives the expected value of being in
state St at time t and following an optimal policy forward.
We index the value functions by time which is appropriate for
finite-horizon models. We use a finite-horizon model because
it makes the modeling of information (and randomness) more
explicit, especially when we use the expectation form.

The standard presentation in dynamic programming texts
(e.g., Puterman []) is that the state space is discrete and can
be represented as S = (1, 2, . . . , |S|). This is known in the
artificial intelligence community as a flat representation [].
The “textbook” solution to dynamic programming assumes
Vt+1(s) is known and computes Vt(s) for each s ∈ S. Since
this step requires stepping backward through time, this is
often referred to as backward dynamic programming.

Naval Research Logistics DOI 10.1002/nav

Powell: Approximate Dynamic Programming 241

Figure 1. A generic approximate dynamic programming algorithm using a lookup-table representation.

If St is a discrete, scalar variable, enumerating the states is
typically not too difficult. But if it is a vector, then the number
of states grows exponentially with the number of dimensions.
If St is continuous (even if it is scalar), then we cannot use this
strategy at all. The essence of approximate dynamic program-
ming is to replace the true value function Vt(St) with some
sort of statistical approximation that we refer to as V̄t (St), an
idea that was suggested in Ref. .

The second step in approximate dynamic programming is
that instead of working backward through time (computing
the value of being in each state), ADP steps forward in time,
although there are different variations which combine step-
ping forward in time with backward sweeps to update the
value of being in a state. Continuing to use our finite-horizon
model, we are going to start with a given state S0 and fol-
low a particular sample path ω ∈ �. We are going to do this
iteratively, so assume we are about to start iteration n. After
iteration n − 1, we have an approximation V̄ n−1

t (St). We use
this approximation to make decisions while we are following
the nth sample path ωn. This means that our decision function
is given by

Xπ
(
Sn

t

) = max
xt

(
C

(
Sn

t , xt

) + γ E
{
V̄ n−1

t+1 (St+1)|Sn
t

})
. (6)

Note that this provides us with a specific definition of
what is meant by a policy π . In this setting, the policy is
determined by the value function approximation V̄t+1(St+1),
which means the policy space � is the set of all possible value
function approximations.

Let xn
t be the value of xt that solves this problem, and let

v̂n
t = C

(
Sn

t , xn
t

) + γ E
{
V̄ n−1

t+1 (St+1)|St

}
(7)

be a sample estimate of the value of being in state Sn
t . There-

are numerous ways to approximate a value function, and as
a result there are many ways to estimate a value function
approximation. But the simplest approximation is known as
a lookup table, which means that for each discrete state s, we
have an estimate V̄t (s) which gives the value of being in state
s. If we are using a lookup-table representation, we would
update our estimate using

V̄ n
t

(
Sn

t

) = (1 − αn−1)V̄
n−1
t

(
Sn

t

) + αn−1v̂
n
t . (8)

Here, αn−1 is known as a stepsize, since Eq. (8) can be derived
from a type of stochastic optimization algorithm (see Ref. ,
Chapter 6 for a more detailed discussion). More on this later.

Figure 1 summarizes a generic ADP algorithm. Note that
it steps forward in time, and at no point does it require that
we enumerate all the states in the state space, as is required in
classical backward dynamic programming. On the surface, it
seems as if we have eliminated the curse of dimensionality.

The algorithm in Fig. 1 serves as a reference point for all
the research that takes place in the approximate dynamic pro-
gramming literature. Although it is nice to eliminate the need
to enumerate states, this algorithm is unlikely to work for any
problem that cannot already be solved exactly. First, while we
do not explicitly enumerate all the states, we need an approx-
imation of the value of being in any state that we might visit.
Although this limits us to states that are visited, and any state

Naval Research Logistics DOI 10.1002/nav

242 Naval Research Logistics, Vol. 56 (2009)

that might be visited from any state that is actually visited,
this can still be a very large number.

Second, this algorithm only updates the values of states
that we actually visit. Assume these values are positive, and
that our initial approximation uses zero. This means that any
state that we do not actually visit will keep a value of zero.
Once we visit a state (presumably raising its value), we are
more inclined to take actions that might take us back to this
state. This means we have to find a way to visit states just to
learn their value.

There are other problems. While we may have created the
appearance of solving the curse of multidimensional state
variables, we still may have a problem with multidimen-
sional information variables. Consider a problem of manag-
ing inventories for P product types, where Stp is the number
of units of product p. Now let D̂tp be the random demand
for product p at time t , where demands may be correlated.
Finding the expectation over the multivariate distribution of
the vector Dt now becomes computationally intractable. This
is the second curse of dimensionality.

Finally, consider what happens when xt is a vector. Let xtp

be the number of products of type p that we are ordering,
so xt is now a vector. If we actually were using a lookup-
table representation for a value function, the only way to
solve the optimization problem in Eq. (6) is to enumerate
the action space. When xt is a vector, the number of poten-
tial actions grows just as it does for the state space. This
is the third curse of dimensionality. A separate but related
issue arises when states, information, and actions are con-
tinuous. This introduces issues even when these variables
are scalar. Interestingly, approximate dynamic programming
handles multidimensional discrete variables as if they are
continuous.

3. OVERCOMING THE CURSES OF
DIMENSIONALITY

Before we progress too far, it is important to address the
three curses of dimensionality, beginning with state variables.
We begin by noting that the so-called curse of dimensional-
ity is really an artifact of flat representations. If the state St is
a multidimensional vector of discrete variables, it is almost
never going to be practical to list out all possible combinations
of the state variable in a single list (the flat representation).
Instead, it is much better to retain the original structure of
the state variable, something that the artificial intelligence
community refers to as a factored representation [].

State variables can be a mixture of discrete, continuous,
and categorical values. Assume for the moment that all the
elements of the state variable are numerical (discrete or con-
tinuous). The first trick that is widely used to overcome
multidimensional variables is to simply treat the vector St

as continuous. For example, imagine that Sti is the number
of units of product of type i. We might then approximate the
value function using

V̄t (St |θ) =
∑
i∈I

θiSti . (9)

This is a very simple approximation that assumes that the
behavior of the value function is linear in the number of units
of product. The parameter θi captures the marginal value of
products of type i. Now, with just |I| parameters, we have a
value function that covers the entire state space. Of course,
this particular approximation architecture (linear in St) may
not provide a very good approximation, but it hints at the
basic strategy for overcoming the curse of dimensionality.
Section 4 deals with value function approximations in more
detail.

The second problem is the expectation. There are many
real-world problems where the random information is a large
vector of prices and demands, making it computationally
impossible to compute the expectation exactly. It is possi-
ble to approximate the expectation by using a sample, but
this can complicate the optimization problem when xt is a
vector.

There are many problems where the decision is fairly sim-
ple (what price to charge, what quantity should be ordered),
but there are also problems where xt is a potentially high
dimensional vector. How do I allocate my workforce to dif-
ferent assignments around the world? Which drug treatments
should I test? When xt is a vector, then we have to draw
on the field of mathematical programming, whether it be
linear or nonlinear programming, integer programming, or
a messy combinatoric problem that requires your favorite
metaheuristic.

An elegant way to circumvent the imbedded expectation is
to use a concept called the post-decision state variable. The
post-decision state captures the state of the system immedi-
ately after we make a decision but before any new information
has arrived. This means that the post-decision state is a deter-
ministic function of St (also known as the pre-decision state)
and the decision xt .

To our knowledge, the term “post-decision state” was first
introduced in Ref. , but the concept has been widely used,
although without much attention given to its importance to
handling problems that exhibit vector-valued decision, infor-
mation, and state variables. Judd [] refers to the post-decision
state as the end-of-period state, whereas in the reinforcement
learning community, it is called the after-state variable [].
The decision tree literature has used it extensively when it
breaks down problems into decision nodes (which repre-
sent pre-decision states) and outcome nodes (which repre-
sent post-decision states). We have found that when dealing
with vector-valued decision, information and state variables

Naval Research Logistics DOI 10.1002/nav

Powell: Approximate Dynamic Programming 243

(the three curses of dimensionality), the post-decision state
variable takes on critical importance.

Since we are using xt as our decision variable, we let Sx
t

represent our post-decision state variable. We assume that we
are given a deterministic function SM ,x(St , xt) that returns Sx

t .
Examples of post-decision state variables include

Tic-tac-toe – The pre-decision state is the board just before
we make our move. The post-decision state is the board
immediately after we make our move, but before our
opponent makes his move.

Inventory problems – Classical inventory problems are
described using the equation St+1 = max{0, St + xt −
D̂t+1} where St is a scalar giving the amount of inven-
tory, xt is the new product we have just ordered and
D̂t+1 is the random demand (unknown at time t). St is
the pre-decision state. We would write Sx

t = St + xt as
the post-decision state.

Blood management – Let Rti be the number of units of
blood of type i, and let Dtj be the demand for blood
of type j . For our illustration, assume that unsatisfied
demands are lost to our system (they obtain blood sup-
plies elsewhere). Our state variable would be St =
(Rt , Dt). Let xtij be the number of units of blood supply
of type i that are assigned to demands of type j . The
leftover blood would be

Rx
ti = Rti −

∑
j

xtij .

Since unsatisfied demands are lost, our post-decision
state variable is Sx

t = Rx
t .

It takes some time to get used to defining the post-decision
state. The most important feature is that it has to be a deter-
ministic function of St and xt . This does not prevent us from
using a forecast of future information. For example, let R̂t+1,i

be a random variable giving us the donations of blood that
arrive between t and t + 1. Now let R̄t ,t+1,i be a forecast of
what will be donated between t and t + 1. Of course, this
forecast is known at time t , and is based on information that
arrived before time t . We can write the post-decision state
variable as

Rx
ti = Rti −

∑
j

xtij + R̄t ,t+1,i .

Another form of post-decision state variable is Sx
t = (St , xt),

which is a concatenation of the pre-decision state and the
decision vector. For problems in operations research, this
looks hopelessly clumsy. However, this is precisely what is
done in a branch of the reinforcement learning community

that uses a concept known as Q-learning which focuses on
learning the value of being in a state St and taking an action xt .

Once we have defined our post-decision state, we then
have to fit our value function approximation around the post-
decision state instead of the pre-decision state. Let V̄

x,n
t (Sx

t)

be our estimate of the value of being in post-decision state
after n observations. If we are using a lookup-table represen-
tation (one value per state), then instead of using the update
given in Eq. (8), we would use

V̄
x,n
t−1

(
S

x,n
t−1

) = (1 − αn−1)V̄
x,n−1
t−1

(
S

x,n
t−1

) + αn−1v̂
n
t . (10)

Comparing Eqs. (8) and (10), we see that the update is almost
the same, except that we use v̂n

t (measured at time t) to update
the value function approximation V̄

x,n
t−1 around the previous

post-decision state variable S
x,n
t−1. We note that the smoothing

of v̂n
t into V̄

x,n−1
t−1 (·) represents the step where we approximate

the expectation. This means that we make decisions using

Xπ
(
Sn

t

) = max
xt

(
C

(
Sn

t , xt

) + γ V̄ x,n−1
t

(
Sx

t

))
. (11)

Note that the right hand side of Eq. (11) is deterministic
(everything is indexed by t). This makes it much easier to
use the large library of solvers for deterministic problems. We
just have to use some care when designing the value function
approximation. For example, if maxxt

C(Sn
t , xt) is a linear

program, then we would ideally like to choose an approxi-
mation architecture for V̄

x,n−1
t (Sx

t) that does not destroy this
structure. If it is a concave nonlinear program (note that we are
maximizing), then the value function approximation should
retain concavity (and perhaps differentiability). Lookup-table
representations can only be used if our search procedure is
something like a local search heuristic.

The post-decision state variable provides at least a path
for solving problems which can handle vector-valued states,
information, and decisions. This returns us to the central
challenge of approximation dynamic programming which is
designing and estimating the value function approximation.

4. FITTING A VALUE FUNCTION
APPROXIMATION

Central to approximate dynamic programming is the use of
an approximation of the value function for making decisions.
The holy grail of ADP is to define an approximation strat-
egy that works for any problem, without tuning. Since we
have not reached this goal, we tend to seek approximation
strategies that work for the broadest possible classes. Below,
we describe three very general strategies, but recognize that
ADP remains an art form which requires taking advantage of
problem structure.

Naval Research Logistics DOI 10.1002/nav

244 Naval Research Logistics, Vol. 56 (2009)

4.1. Multilevel Aggregation

Aggregation is a powerful technique that requires perhaps
the least amount of problem structure among the family of
statistical tools available. We assume that we have a state
variable St that is usually multidimensional, and may include
discrete, continuous, and categorial elements. We are going to
make no assumptions about the behavior of the value function
itself (e.g., concavity, monotonicity, or even continuity). But
we are going to assume that there is a natural way to aggregate
the state space into successively coarser representations.

Let S be the original state space, and let S(g) be the state
space at the gth level of aggregation. Let Gg be a function
mapping S to S(g), and let G be the set of indices correspond-
ing to the levels of aggregation. We assume that g = 0 is the
most disaggregate level, but even at this level we assume the
state space has been aggregated into a set of discrete values.
But the number of possible aggregated values may be too
large to enumerate (even at higher levels of aggregation).

Our value function approximation estimates a single value
for a discrete state s at each level of aggregation, but these val-
ues are only updated for states that we actually visit. Assume
that we are at time t , iteration n and we are visiting state Sn

t

where the value of being in this state is given by v̂n
t [see Eq.

(7)]. We let V̄
(g,n)
t (s) be an estimate of the value of being in

state s at the gth level of aggregation. This is updated using

V̄
(g,n)
t (s)=

{
(1−αn−1)V̄

(g,n−1)
t (s)+ αn−1v̂

n
t if Gg

(
Sn

t

)=s,

V̄
(g,n)
t (s(g)) otherwise.

(12)

We note that the stepsize αn−1 is not just a function of the
iteration counter, but is typically a function of the number
of times that we have visited a particular state at a particular
level of aggregation.

Aggregation has been widely used to overcome the prob-
lem of large state spaces (see Ref. for a review). The most
common strategy is to choose a single level of aggrega-
tion, which raises the issue of determining the right level of
aggregation. The problem with aggregation is that the right
level changes with the number of times you observe a set of
states. Some authors have suggested changing the level of
aggregation with the number of iterations [,].

A more flexible strategy is to use a weighted sum of
estimates from different levels of aggregation, given by

V̄ n(s) =
∑
g∈G

w(g,n)(s)V̄ (g,n)(s). (13)

Note that the weight we put on the gth level of aggregation
depends on both the iteration counter and the state. Since
there are many states, this means that we have to estimate
a large number of weights. A simple strategy is to weight

estimates in inverse proportion to the total variation of the
error, given by

w(g)(s) ∝
(

σ̂ 2(s)(g,n)

Ng,n(s)
+ (µ̄(g,n)(s))2

)−1

. (14)

where σ̂ 2(s))(g,n) is an estimate of the variance of the obser-
vations of state s after n iterations, at the gth level of aggre-
gation. Ng,n(s) is the number of times we have observed state
s at the gth level of aggregation, and µ̄(g,n)(s) is an estimate
of the bias between the value at the gth level of aggregation,
and the more disaggregate level (g = 0). σ̂ 2(s)(g,n)/Ng,n(s)

is an estimate of the variance of V̄ (g,n)(s) which declines as
we have more observations of state s. If there are states that
we do not visit very often, the variance tends to remain high
because of this term. If we visit a state many times, the total
variation may decline considerably, or it may remain high if
our estimate of the bias remains high. The weights are then
normalized so they sum to one. The computations are quite
simple, and requires only that we accumulate some statistics
for every state we visit, at each level of aggregation (see Ref.
, Section 7.1. for a complete presentation).

This strategy is very easy to implement, and scales to very
large problems. If a state has never been observed at a particu-
lar level of aggregation, then it is simply assigned a weight of
zero. This logic tends to put higher weights on more aggregate
estimates early in the process. As there are more observa-
tions for certain states, the weight put on the disaggregate
levels increases, although generally not for all states. The
effect of this logic is shown in Fig. 2, which displays the
objective function if the value function is approximated at a
single aggregate level, a single disaggregate level, or using
a weighted combination of both levels of aggregation with
weights given by Eq. (14). The aggregate value function gives

Figure 2. The weights given to two levels of aggregation, showing
how they put increasingly more weight on disaggregate estimates as
more information becomes available. [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.com.]

Naval Research Logistics DOI 10.1002/nav

Powell: Approximate Dynamic Programming 245

faster initial convergence, while the disaggregate estimates
give a better overall solution, but the weighted combination
gives the best results overall.

4.2. Basis Functions

Perhaps the most widely publicized strategy for approxi-
mating value functions is to capture important quantities from
the state variable, and build an approximation around these
quantities. These quantities are captured using basis func-
tions, φf (s), f ∈ F where f is referred to as a feature, and
φf (s) is a function that captures some particular quality from
the state variable that is felt to provide explanatory power. We
might then write a value function using

V̄t (St |θ) =
∑
f ∈F

θf φf (St).

This is referred to as a linear model because it is linear in the
parameters. The basis functions may capture different types
of nonlinear behaviors. Returning to our product management
application where Sti is the number of units of product type
i, we might start with basis functions φf (St) = (Sti)

2 (one
feature per product type), and φf (St) = StiStj (one feature
per pair of product types).

The challenge now is estimating the parameter vector θ .
A simple strategy is to use a stochastic gradient algorithm,
given by

θn = θn−1 − αn−1
(
V̄t

(
Sn

t |θn−1
) − v̂n

t

)∇θ V̄t

(
Sn

t |θn−1
)

= θn−1 − αn−1
(
V̄

(
Sn

t |θn−1
) − v̂n

(
Sn

t

))

φ1
(
Sn

t

)
φ2

(
Sn

t

)
...

φF

(
Sn

t

)

 .

(15)

This method requires that we start with an initial estimate
θ0, after which θ is updated following each observation v̂n

t ,
typically calculated using Eq. (7). This method of updating
θ is popular because it is simple, but it can be unstable. One
challenge is that the stepsize α has to be scaled to handle
the difference in units between θ and the gradient, but it may
be necessary to use different scaling factors for each fea-
ture. More effective algorithms use recursive least squares
(described in Refs. , , Chapter 7). The Kalman filter is a par-
ticularly powerful algorithmic framework, although it is more
difficult to implement (see Ref. for a nice discussion).

Basis functions are appealing because of their relative sim-
plicity, but care has to be put into the design of the features.
It is tempting to make up a large number of functions φf (S)

and throw them into the model, but putting some care into
the choice of functions is generally time well spent. The
challenge with any choice of basis functions is demonstrating
that they actually contribute to the quality of the solution.

4.3. Other Statistical Methods

It is important to draw on the widest possible range of
techniques from statistics and machine learning. An excellent
reference is [], which covers a broad range of methods for sta-
tistical learning. Bertsekas and Tsitsikis [] and Haykin [] pro-
vide in-depth discussions on the use of neural networks, and
Chapters 6 and 12 in Judd [] provide a very thorough overview
of approximation methods for continuous functions.

A major issue that arises when adapting these methods
to approximate dynamic programming is the importance of
using recursive methods, and developing methods that pro-
duce “good” approximations as quickly as possible. The
value of being in a state depends on the quality of decisions
that are being made which in turn depend on the quality of the
value function approximation. A poor initial approximation
can yield poor decisions which bias the estimates v̂n

t being
used to estimate the value function. Not surprisingly, it is easy
to develop ADP algorithms that either do not converge at all,
or converge to very poor solutions.

4.4. Approximations for Resource Allocation

Aggregation and basis functions are two methods that have
the advantage of being quite general. But with ADP, it is
especially important to take advantage of problem structure.
One very broad problem class can be referred to as “resource
allocation” where decisions involve the management of peo-
ple, equipment, energy and agricultural commodities, con-
sumer goods and money. Examples of these problems arise in
transportation (allocation of vehicles), supply chain manage-
ment, financial portfolios, vaccine distribution, emergency
response management and sensor management (to name just
a handful).

A simple but flexible mathematical model consists of

a = vector of attributes describing a resource,

where a ∈ A,

Rta = number of resources available with attribute

a at time t ,

Rt = (Rta)a∈A,

d = a type of decision that acts on a single type of

resource, where d ∈ D,

xtad = the number of times we act on resources with

attribute a using a decision of type d at

time t ,

xt = (xtad)a∈A,d∈D,

C(Rt , xt) = contribution earned by implementing decision

vector xt given the resource state vector Rt .

Naval Research Logistics DOI 10.1002/nav

246 Naval Research Logistics, Vol. 56 (2009)

Resources are often reusable, which means if we act on
a resource with attribute a using decision d , we obtain a
resource with attribute a′ (this can be random, but this is
not central to our discussion). Let RM(Rt , xt , Wt+1) be the
resource transition function, comparable to our state transi-
tion function we defined earlier. We can also assume that we
have a post-decision resource transition function that returns
Rx

t = RM ,x(Rt , xt). Further assume for illustrative purposes
that we are using a linear value function approximation of the
form

V̄t

(
Rx

t

) =
∑
a∈A

v̄taRta .

If we are in state Rn
t , we would make a decision using

xn
t = arg max

xt

(
C

(
Rn

t , xt

) + γ V̄ n−1
t

(
Rx

t

))
. (16)

This problem generally has to be solved subject to constraints
that include ∑

d∈D
xtad = Rta (17)

xtad ≥ 0.

Earlier [Eq. (7)] we used the objective function value v̂n
t to

update our estimate of the value of being in a state. When
we are solving resource allocation problems, a much more
effective technique recognizes that we are not so much inter-
ested in the value of being in a state as we are interested in
the marginal value of a resource. Furthermore, we can obtain
estimates of the marginal value of each type of resource from
the dual variables of the flow conservation constraints Eq.
(17). Let v̂n

ta be the dual variable associated with Eq. (17).
Note that this returns a vector (v̂n

ta)a∈A rather than a single
scalar, as was the case before. If we are in fact using a linear
value function approximation, we can update the slopes using

v̄n
t−1,a = (1 − αn−1)v̄

n−1
t−1,a + αn−1v̂

n
ta .

Updating these marginal values using dual variables is
extremely powerful. Not only do we get an entire vector
of marginal values, but we also get information on slopes
(which is what we really need) rather than an estimate of
the value of being in a state. This logic can be extended to
a range of value function approximation strategies, includ-
ing piecewise-linear separable, continuously differentiable
concave functions, and multidimensional cuts (see Ref. ,
Chapter 11 for a more complete discussion). We note that
this general strategy includes techniques such as stochastic
decomposition (see Refs. ,) which are traditionally thought
of as belonging to the field of stochastic programming.

Resource allocation is one problem class where the dimen-
sionality of xt can be particularly large, and there may also be

integrality requirements. For these problems, it is particularly
important to design value function approximations which
work well with commercial solvers or particular algorithmic
strategy suited to the problem.

5. OTHER ALGORITHMIC ISSUES

Assuming that you have found a way to approximate the
value function that captures the important characteristics of
your problem, you now know enough to get yourself into
some serious trouble. Even applied to simple problems, the
techniques above can work well, but may work very poorly.
You would not be the first person to run some experiments
and conclude that “approximate dynamic programming does
not work.” Below, we address two issues that can be described
as how fast we learn, and what we learn.

5.1. The Challenge of Stepsizes

Up to now, we have routinely smoothed old estimates with
new observations to produce updated estimates [see Eq. (8)].
This smoothing is done with a quantity αn−1 that we have
referred to as a stepsize. For the purposes of our discussion,
we assume that we are using the stepsize to smooth between
old and new estimates (as in (8)), where we can assume that
the stepsize is between 0 and 1, rather than in an equation such
as (15), where the stepsize has to perform a scaling function.

The smoothing step in Eq. (8) is needed only because we
have to resort to Monte Carlo sampling to compute v̂n

t . This
would not be necessary if we could compute the expecta-
tion in Bellman’s Eq. (4) (or (5)). If we could compute the
expectation, we would use αn−1 = 1, giving us traditional
value iteration []. In such a setting, the value of a state typi-
cally increases over time, representing the approximation of
the summation in Eq. (3). However, we generally depend on
Monte Carlo sampling when we are not able to compute the
expectation, as is typically the case.

Imagine now that we can only measure contributions with
uncertainty. The uncertainty might be in the contribution
function itself, or in the constraints that govern the choice
of a decision. Further imagine that the discount factor γ = 0,
which means we do not even care about the downstream
impact of decisions made now. If this were the case, the best
possible stepsize would be αn−1 = 1/n, which is equiva-
lent to simply averaging different sample observations. The
so-called “one over n” stepsize rule is well-known to satisfy
important conditions for convergence, but it can also pro-
duce a rate of convergence so slow that it should never be
used (see Section 9.3. of Ref.). Care has to be used when
applying recursive least squares to estimate the parameter
vector θ , since this uses an implicit 1/n stepsize (see Section
7.3.3. of Ref. for a way of overcoming this).

Naval Research Logistics DOI 10.1002/nav

Powell: Approximate Dynamic Programming 247

Figure 3. The stepsizes produced by the BAKF stepsize rule
and the 1/n rule for a typical nonstationary series. [Color
figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

Choosing the best stepsize, then, requires performing a
difficult balancing act between the need to add up contribu-
tions over an extended horizon against the need to smooth
out the noise from sampling error. There is a wide range of
stepsize formulas that have been proposed, coming from dif-
ferent communities (see Ref. for a review), but our work
has suggested that it is useful to consider three classes of
formulas:

Constant stepsize – Start by simply choosing a constant
stepsize αn = α0, and then experiment with α0.

Harmonic stepsize sequence – The problem with a con-
stant stepsize is that it does not decline, which means
you will never get strong convergence results. A good
alternative is

αn−1 = a

a + nβ − 1

Start with β = 1, but try β = 0.7. Choose a after
performing experiments with a constant stepsize. There
are problems where 100 iterations produces very good
results, while others need 100,000 iterations (or mil-
lions). Choose a so that you get a “small” stepsize as
the algorithm appears to be converging, based on your
experiments with a constant stepsize. There are prob-
lems where a = 5 works well, while other problems
need a = 5000.

Stochastic stepsizes – These are stepsizes that adjust them-
selves to the actual behavior of the algorithm. A strategy
called the bias-adjusted Kalman filter (BAKF) stepsize
rule minimizes the total variation between the actual and
predicted value functions, given by

αn−1 = 1 − σ 2

(1 + λn−1)σ 2 + (βn)2
(18)

where λn, σ 2 and βn are computed using simple recur-
sions (see Ref. , section 7.1.). Because σ 2 and βn have
to be estimated from data, the stepsize is stochastic. If
the noise σ 2 = 0, we get α = 1. As σ 2 grows (relative
to the bias βn), the stepsizes tends to 1/n.

Stochastic stepsize formulas are appealing because they adapt
to the data, avoiding the need to tune parameters such as a

and β. But they do not work well when there is too much
noise. Figure 3 illustrates the BAKF stepsize rule Eq. (18)
for a nonstationary series typical of approximate dynamic
programming. The stepsize is initially larger, declining as
the data stabilizes. Note that the stepsizes never fall below
1/n, which is critical to avoid stalling. But if the data is very
noisy, what can happen is that the stepsize can be fooled into
thinking that the underlying signal is changing, producing a
larger stepsize when we really need a smaller stepsize.

5.2. Exploration vs. Exploitation

One of the best-known challenges in approximate dynamic
programming is famously referred to as the exploration vs.
exploitation problem. Throughout our presentation (as in the
algorithm in Fig. 1), we have presented ADP as a procedure
where we find an action xn

t , and then use this to determine
the next state. For most problems, this is not going to work,
although the issues depend very much on the nature of how
you are approximating the value function.

Imagine that you are using a lookup table, and that you
only update the value of a state if you visit the state. Fur-
ther assume that you initialize the value of being in a state
to a number that is lower than what you would expect in
the limit. Each time you visit a state, the value of being in
that state tends to rise, producing a situation where you are
biased toward revisiting states that you have already visited.
Quickly, the procedure can become stuck cycling between a
relatively small number of states. If values are initialized too
high, the algorithm tends to endlessly explore.

Striking a balance between exploration and exploitation
remains one of the fundamentally unsolved problems in
approximate dynamic programming (and since ADP mim-
ics life, we would argue that this stands alongside one of the
unsolved problems of life). There are simple heuristics that
are often used. For example, before choosing the state to visit
next, you might flip a coin. With probability ρ, you choose
the next state at random. Otherwise, you visit the state deter-
mined by the action xn

t . This works well on small problems,
but again, if the state space is large, an exploration step has
almost no meaning.

We refer the reader to Chapter 10 of Powell [] for a more
in-depth discussion of strategies to balance exploration and
exploitation, as well as the strategies for state sampling that

Naval Research Logistics DOI 10.1002/nav

248 Naval Research Logistics, Vol. 56 (2009)

are presented in Ref. . However, we feel that this general
problem area represents many opportunities for research.

5.3. Evaluating an ADP Strategy

The last challenge in the design of an ADP algorithm is
deciding how to evaluate it. While there is no single answer
to the question of how to do this, it is very important that
some sort of benchmark be prepared, since it is possible for
an improperly ADP algorithm to work very poorly. Some
strategies that might be considered include:

Compare to an optimal MDP – In some cases, it is possi-
ble to simplify a problem (but not to the point where it
becomes meaningless) so that it can be solved optimally
as a standard backward Markov decision process []. If
this is possible, then apply the ADP algorithm, designed
for the more complicated problem, to this simpler prob-
lem. If the ADP reasonably approximates the optimal
solution, then we have more confidence that it is doing
a good job on the real problem.

Compare to an optimal deterministic problem – In some
cases, a deterministic version of the problem is mean-
ingful and can be solved optimally using a commercial
solver. ADP can handle uncertainty, but it should also
be possible to apply to a deterministic version of the
same problem [,] provide examples of this type of
comparison).

Comparison to a myopic or rolling horizon policy – We
opened this article with a description of three broad
strategies for solving stochastic optimization problems.
Sometimes, the best competition will be one of these
other strategies.

Figure 4 illustrates the evaluation of policy based on
approximate dynamic programming where it is compared to a
rolling horizon procedure. Both methods are reported relative
to a posterior bound where an optimal solution is computed
after all random quantities become known. Of course, this is
not possible with all problems, but it is a useful benchmark
when available.

6. APPLICATIONS AND IMPLEMENTATIONS

Approximate dynamic programming is an exceptionally
powerful modeling and algorithmic strategy that makes it
possible to design practical algorithms for a wide range
of complex, industrial-strength problems. This probably
explains its broad appeal with the computer science and
control theory communities under names that include rein-
forcement learning and neuro-dynamic programming. Our

Figure 4. The objective function produced using approximate
dynamic programming and a rolling horizon procedure compared
against a posterior bound for 10 different datasets, from Powell [].
[Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]

own personal experience began with projects in freight trans-
portation which has produced practical tools that have been
implemented and adopted in industry. These applications
include managing freight cars for Norfolk Southern Railroad
[], planning drivers for Schneider National [], managing high-
value spare parts for Embraer [], and optimizing locomotives
for Norfolk Southern. These are production applications,
adopted by industry.

However, approximate dynamic programming is also
famous for its laboratory successes but field failures, not
unlike other areas of science and technology. It is not hard
to find people who have tried ADP, only to report that it did
not work. Others complain that it requires substantial tuning.
These complaints are valid, but can be avoided if care is given
to the following issues:

a) ADP is a powerful modeling and algorithmic technol-
ogy. Not all problems need this. If you can solve your
problem using policy optimization (tuning a myopic
policy), then this is usually going to work better, but
this typically only works well when you can obtain
good solutions using a relatively simple policy.

b) It is useful to understand what behavior you are look-
ing for from a value function. For example, if you set
the value function to zero, what is wrong with the solu-
tion? As you design a value function approximation,
be sure that it directly addresses whatever issue you
raise.

c) The value function approximation should capture the
structure of your problem. Blindly making up basis
functions is unlikely to work. You have to have a good
understanding of the important elements of the state

Naval Research Logistics DOI 10.1002/nav

Powell: Approximate Dynamic Programming 249

variable that impact the future in a way that you feel
is important.

d) If you have a resource allocation problem (which
describes a large number of problems in operations
research), use approximations that reflect the unique
behaviors of resource allocation problems. In par-
ticular, make sure you take advantage of derivative
information where available.

e) The wrong stepsize formula can ruin an ADP algo-
rithm. If the stepsizes decrease too quickly, the algo-
rithm can appear to converge when in fact it is far
from the correct solution. A stepsize that is too large
can produce unstable behavior. This is particularly
problematic when using basis functions where a small
change in the regression vector θ can change the entire
value function approximation. These updates have to
be carefully designed.

f) A topic that we only touched on is the exploration vs.
exploitation problem (Chapter 10 of Ref.). The impor-
tance of this issue is problem-dependent, and for many
problems remains unresolved.

ADP seems to work best when there is natural problem
structure that guides the choice of the value function approx-
imation, but this alone is not enough. Our work in resource
allocation problems work well because the value function is
naturally concave (when posed as a maximization problem),
which also avoids issues associated with exploration (the
algorithm naturally seeks out the maximum of the function).

The good news is that ADP solves problems the way
people do, which is a reason why it has been so popu-
lar in the artificial intelligence community. Getting ADP
to work well teaches you how to think about a problem.
The most important dimension of ADP is “learning how
to learn,” and as a result the process of getting approxi-
mate dynamic programming to work can be a rewarding
educational experience.

ACKNOWLEDGMENTS

This research was supported in part by grant AFOSR-
F49620-93-1-0098 from the Air Force Office of Scientific
Research.

REFERENCES

[1] R. Bellman, Dynamic Programming, Princeton University
Press, Princeton, 1957.

[2] R. Bellman and S. Dreyfus, Functional approximations and
dynamic programming, Math Tables Other Aids Comput 13
(1959), 247–251.

[3] D. Bertsekas and D. Castanon, Adaptive aggregation meth-
ods for infinite horizon dynamic programming, IEEE Trans
Automatic Control 34 (1989), 589–598.

[4] D. Bertsekas and J. Tsitsiklis, Neuro-dynamic programming,
Athena Scientific, Belmont, MA, 1996.

[5] J. Birge and F. Louveaux, Introduction to stochastic program-
ming, Springer-Verlag, New York, 1997.

[6] C. Boutilier, T. Dean, and S. Hanks, Decision-theoretic plan-
ning: Structural assumptions and computational leverage, J
Artificial Intel Res 11 (1999), 1–94.

[7] H. Chang, M. Fu, J. Hu, and S. Marcus, Simulation-based
algorithms for Markov decision processes, Springer, Berlin,
2007.

[8] D.P. Choi and B. Van Roy, A generalized Kalman filter for
fixed point approximation and efficient temporal-difference
learning, Discrete Event Dyn Syst 16 (2006), 207–239.

[9] M. Fu, Optimization for simulation: Theory vs. practice,
INFORMS J Comput 14 (2002), 192–215.

[10] A. George and W.B. Powell, Adaptive stepsizes for recur-
sive estimation with applications in approximate dynamic
programming, Mach Learn 65 (2006), 167–198.

[11] G. Godfrey and W.B. Powell, An adaptive, dynamic program-
ming algorithm for stochastic resource allocation problems.
Single period travel times, Transp Sci 36 (2002), 21–39.

[12] T. Hastie, R. Tibshirani, and J. Friedman, The elements of sta-
tistical learning, Springer series in Statistics, New York, NY,
2001.

[13] S. Haykin, Neural networks: A comprehensive foundation,
Prentice Hall, Upper Saddle River, New Jersey, 1999.

[14] J. Higle and S. Sen, Stochastic decomposition: An algorithm
for two stage linear programs with recourse, Math Oper Res
16 (1991), 650–669.

[15] K. Judd, Numerical methods in economics, MIT Press, Cam-
bridge, 1998.

[16] R. Luus, Iterative dynamic programming, Chapman and
Hall/CRC, New York, 2000.

[17] W.B. Powell, Approximate dynamic programming: Solving
the curses of dimensionality, Wiley, New York, 2007.

[18] W.B. Powell and H. Topaloglu, “Fleet management,” Applica-
tions of stochastic programming, Math Programming Society
– SIAM Series in Optimization, S. Wallace and W. Ziemba
(Editors), Philadelphia, 2005, pp. 185–216.

[19] M.L. Puterman, Markov decision processes, Wiley, New York,
1994.

[20] D. Rogers, R. Plante, R. Wong, and J. Evans, Aggregation and
disaggregation techniques and methodology in optimization,
Operat Res 39 (1991), 553–582.

[21] H.P. Simao and W.B. Powell, Approximate dynamic program-
ming for management of high value spare parts, J Manufac
Technol Management 20 (2009), in press.

[22] H.P. Simao, J. Day, A.P. George, T. Gifford, J. Nienow, and
W.B. Powell, An approximate dynamic programming algo-
rithm for large-scale fleet management: A case application,
Transp Sci (2009), in press.

[23] J.C. Spall, Introduction to stochastic search and optimization:
estimation, simulation and control, Wiley, Hoboken, NJ, 2003.

[24] R. Sutton and A. Barto, Reinforcement learning, The MIT
Press, Cambridge, Massachusetts, 1998.

[25] H. Topaloglu and W.B. Powell, Dynamic programming
approximations for stochastic, time-staged integer multi-
commodity flow problems, Informs J Comput 18 (2006),
31–42.

[26] B. Van Roy, D.P. Bertsekas, Y. Lee, and J.N. Tsitsiklis, “A
neuro-dynamic programming approach to retailer inventory
management,” in: Proceedings of the IEEE Conference on
Decision and Control, IEEE Press, Piscatawa, NJ, Vol. 4, 1997,
pp. 4052–4057.

Naval Research Logistics DOI 10.1002/nav

